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ON THE INFLUENCE OF A FLEXURAL B IASING STATE ON THE VELOCITY
OP PIEZOELECTRIC SURFACE WAVES

B. K. Sinha and H.F. Tiersten
Department of Mechanical Engineering,
Aeronautical Engineering & t~~chanics
Rensselaer Polytechnic Institute

Troy, New York 12181

ABSTRACT

A system of linear electroelastic equations for small fields superposed

on a bias is applied in the determination of the velocity of acoustic surface

waves in piezoelectric substrates subject to flexural biasing stresses. The

influence of the biasing stresses appears in the boundary conditions as well

as the differential equations. Direct calculations performed for both quartz

and lithium niobate when the spatial variation of the flexural biasing state

is omitted indicate that the biasing stresses in the boundary conditions have

an important influence on the surface wave velocity. In addition, perturba—

tion calculations are performed which include the influence of the spatial

variation of all flexural biasing terms and it is shown that, for substrate

thickness—to-wavelength ratios well within the practical range, the spatial

variation in the biasing state has an appreciable effect on the velocity of

acoustic surface waves.
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1. Introduction

In recent years, a number of workers13  have measured the change in

acoustic ~urface wave velocity due to applied static biasing stresses,

primarily for application as pressure sensors. In one2 of the aforementioned

works an analytical treatment was presented, whose validity seems questionable

to us because the treatment is not related to the fundamental equations.

More recently, another independent analytical treatment was presented4
, which

properly considers the elastic nonlinearities in the differential equations

but not in the boundary conditions.

In this paper a system of linear electroelastic equations for small

fields superposed on a bias5
, which were obtained from general nonlinear

rotationally invariant electroelastic equations6
, is applied in the determina-

tion of the velocity of surface waves in piezoelectric substrates subject to

flexura]. biasing stresses. The influence of the biasing stresses appears in

the boundary conditions as well as the differential equations. Although the

electric, electroelastic and elastic nonlinearities are included in the basic

equations, only the elastic nonlinearities are included in the calculations

because the nonlinear electroelastic coefficients are not known for either

lithium niobate or quartz, the two materials considered. The nonlinear

electroelastic coefficients may very well be significant in lithium niobate,

even though they are probably negligible in quartz. Nevertheless, numerical

results are obtained for Y-Z lithium niobate and y-cut and ST-cut quartz using

LI the published values of the second and third-order elastic, piezoelectric and

dielectric constants for these materials7’
8
.

The special case of biasing stresses due to flexural loading of a simply

supported plate is considered in detail and all components of the static deforma-

tion that occur in the linear equations for small fields superposed on a

I
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bias are analytically related to the applied loading. Analyses are performed

for both rotated Y-cut quartz and lithium niobate subject to biasing stresses 
V

both in and normal to the propagation direction. Numerical results are pre-

sented for both Y-cut and ST-cut quartz for propagation in the digonal direc— 
V

tion and for Y-cut lithium niobate for propagation in the Z-direction.

Finally, a perturbation equation
9 
for the change in surface wave velocity

under any biasing stress is employed and shown to yield results indistinguishable

from those obtained from the direct calculation for the particular case of

flexure considered here for wavelengths very small compared to the thickness

of the plate. In fact, since the perturbation procedure can readily treat

spatially varying biasing states, for which a direct calculation cannot be

performed, it has a significant advantage over a direct calculation in the

determination of the small changes in surface wave velocities due to biasing

states. Indeed, in the case of flexural loading considered here the biasing

terms actually are functions of position and this fact is ignored in the direct

calculation. When spatial variation of the biasing terms is omitted in the

perturbation calculation, the aforementioned agreement with the direct calcula-

tion for the thick substrate results. However, when the spatial variation in

the biasing terms is included in the perturbation calculation, a readily dis-

tinguishable change from the results of the direct calculation occurs for substrate

thicknesses less than about 100 wavelengths. The deviation increases signifi—

cantly with decreasing thickness and becomes appreciable for thicknesses of the

order of, say, 50 wavelengths, which is well within the practical range. The

V 
results of the calculation for ST—cut quartz subject to a biasing stress in the

propagation direction have been compared with experintent~
0 and the agreement is

quite good .

V 
~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • 
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2 . Linear Electroelastic Equations for Small Fields Superposed on a Bias

The linear electroelastic equations for small fields superposed on a bias

may be written in the form5
’ ~

XL.Y L ~~~~~~~ ~L,L = 0 , (2 .1)

where

= 

~L’~M~~v,M 
+ 

~ MI4~,M ’

— -~ (2.2)
+ 

~~~~~~~~~~
and

= 

~L ~~~ 
+ 

~L~1Mv ’ ~LM 
= - 6

LM 
- £

LM~

GM~~ 
= R~~~ = e~~~ + eMLY

1 1
= T

LMÔW 
+ 

~L~NvABE
AB 

+ 
~L~I1~’t’~V, K

~i 1
+ c  w - k  c p + g

2L1O~V Y, K ].AL~~~ ,A L’~Mv

~~ 2 
-

eML ~~~~~~~~~ 
- ~~~~~~~~~~~~~~~~~~~~~~~~~~

1 2 

= b
IINCD

E
~~D 

- - 2 e J 1E~~~, (2 .3)

and and are lengthy expressions ‘ involving the biasing electric

field and static deformation, which vanish when the biasing electric field

vanishes and are not of interest here. Consequently, we do not present them

here. Equations (2.1) constitute the stress equations of motion and charge

equation of electrostatics referred to the position coordinates of material

points before the static deformation is applied , which are called reference

coordinates and are denoted X M. Equations (2 .2) are the linear electroelastic

constitutive equations and Eqs. (2 .3) contain the definitions of the effective

coefficients defined therein. In (2.1) - (2 .3) L~, u
Y 

and 
~L denote the com-

ponents of the small field Piola-Xirchhoff stress tensor which is asymmetric,

• mechanical displacement vector , and reference electric displacement vector5,

respectively; p° and denote the reference mass density and small field
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electric potential, respectively; CL~~~ , eMLY and 6
LM 

denote the second order

elastic, piezoelectric and dielectric constants, respectively, which are the

constants that occur in the ordinary linear theory of piezoelectricity.

Before discussing the remaining quantities in (2.3) we note that in a

motion the present position of material points y may be written

X~~L
,t) =x+w(XL

) +u(XL,t), (2.4)

where w denotes the displacement due to the applied static loading. In addi-

tion, we note that the electric potentials ~
‘p in the body and ~r in free space

may be written in the respective forms

~~~L,
t)
~~~~~~L

) +
~~

(XL,t), 3(XL,t)=4r
’(X

L
)+

~~
(XL,t) , (2.5)

where 
~
p and 4’ denote the static biasing electric potentials in the body and

1 1in free space. In (2.3) T~~ and EAB denote the components of the static

biasing stress and strain, respectively, and J
1 
is the Jacobian of the static de-

formation. The biasing variables satisfy the appropriate static equations

given in (66) - (72) of Ref.5, or the equivalent equations using reference

coordinates as independent variables. Since we are interested in small biasing

strains only, we have

E~~~ = ~ ~
W

A B  
+ w

B A
) , 

A ] .  

~ 1, (2. 6)

= 
~~~~5w

R S
+e

RN4
p M . (2 .7)

The quantities 
~~~~~~~~ 

bAMLY, 
~~ 

and denote the third-order elastic,

electrostrictive, th4.rd—order electric permeability and first—order electro— 1’

elastic constants, respectively, and C denotes the electric permittivity

of free space. For obvious reasons the notation employed here is designed to

be consistent with the notation of Ref s.5 and 9. The carets over many variables

have been employed here because we consistently use the reference coordinates

L V V • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • V •~~ V~~~~~~~~~~~~~~~ ••
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as independent variables. In particular the Greek subscripts are employed in

order to be consistent with the notation of Ref s.5 and 9, in which Greek sub-

scripts were consistently employed to denote the intermediate coordinates

However, the Greek subscripts are not really important for any of the opera-

tions performed here and may be used interchangeably with the capital Latin

subscripts, which denote reference coordinates XL. The cycles above variables

also have been introduced for consistency with Refs.5 and 9. We have employed

Cartesian tensor notation and introduced vector notation in Eq. (2 .4)  only,

and the convention that a comma followed by an index denotes partial differ-

entiation with respect to a reference coordinate, the dot notation for partial

differentiation with respect to time and the summation convention for repeated

tensor indices.

To these equations we must adjoin the boundary conditions5’
9

NL
(k
LY

_ K
~Y
) O , NL

(.
~L

_ .
~~
)
~~
0,

= 3,L
u
L 

+ 
~, LWL + (2.8)

where w
L 
and U

L 
in (2.8)3, respectively, denote the static biasing and small

field dynamic components of the mechanical displacement at the surface of the

solid, NL 
denotes the unit normal to the reference position of the surface and

f f f~~~= 
~LYB

U
~ 
+ 

~L~IM~
U
~~,M 

+ 
~L~ 4

41, M’

+ 
~LMY~Y,M ~o~~L (2.9)

f f f f f . 5 9
The coefficients 

~L~~ ’ ~~~~~~ ~LMY’ R~~ and R
~~Y 

are lengthy expressions

involving the biasing electric field and static deformation, which vanish when

the biasing electric field vanishes and are not of interest here. Consequently,-. 59
we do not present them here. In free space 41 satisfies Laplaces equation ‘

i.e., 

- •  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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= o  (2.10)
,KK

Since the nonlinear electroelastic coefficients are not known for either

lithium niobate or quartz, or to our knowledge for any material, only the

elastic nonlinearities will be included in the remainder of the analysis and

in the calculations. However, we wish to emphasize the fact that we could

equally readily have included the electroelastic nonlinearities if the coef-

ficier~ts were known. In the case of a purely elastic bias Eqs. (2.1) and (2.2)

remain t nchanged, Eq. (2.3)4 reduces to the form

~ ~T
1 6 +c E1 + c  w +c  w (2 11)

2L’Y~~ LM YV 3L’~MVAB ~~ 2L Y1~M v, K 2L1Q4V Y, K

and Eqs. (2.3)
5 and (2.

3)
6 
are replaced by

eMLY = 0 , €~~~ = 0 . (2.12)

In the case of the purely elastic bias the boundary conditions in (2.8) reduce to

N
L Y

0, NL~L
_ N

L
C
o~,L

, ~~~~~ (2.13)

and the free space equation (2,10) remains unchanged.

3. Static Flexural Loading

Since an acoustic surface wave is sharply confined to the vicinity of the

surface of the substrate in which it propagates and in static flexure of a thin

• plate the magnitude of the stress is maximum at the outer fibers, it is ad-

vantageous to employ flexural loading structures in order to maximize the in—

f].uence on the surface wave velocity for a given loading. Consequently, in

this section we briefly discuss cylindrical flexure of thin plates for the type

of loading shown in Fig.l. The elementary theory of cylindrical flexure of
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thin plates, which is known to be extremely accurate when applicable, rests

on a few critical simplifying assumptions. In most treatments of elementary

flexure, the theory is not presented in a way that readily indicates the

relation between the flexural variables employed and the mechanical displace-

ment vector of the three—dimensional t.ieory, which is needed here for the

static biasing terms in Eq. (2.11), nor is the theory discussed in the case

of anisotropy. However, Mindlin
11 has presented a derivation of the equations

of the theory of flexure of thin anisotropic plates in a manner that clearly

indicates the relation between the plate variables and the mechanical dis-

placement vector of the three-dimensional equations. The brief discussion

presented for the special case of interest here is based on material in

Ref.ll. V

In the case of cylindrical flexure in the x
1
-direction with restrained

motion in the x3—direction the aforementioned critical assumptions are that

• the static displacement field w .~, may be written in the form

(1) (0) 2 (2)w
1
=z2

w
1 (z1) , w2=w2 (z1

) +z2
w
2 (z1

) , w3 =O , (3.1)

the zero order~~
’ shearing strain S~~~ vanishes while the zero order shearing

stress ~~~~ is related to the bending moment ~~~ M by the usual static

equation

= M 1 (3.2)

and the first order thickness stress vanishes. The conditions S~~~ = 0 and
(1) . .P22 

= 0, respectively, yield the important relations

~~~~~~ w~~~ =-  (c12/2c
22

)w~~~ . (3 .3)

Substituting from (3 .3) into the constitutive relation for M, we obtain

M = —  (2h
3
/3)c~1

w~
0
~1 (3.4)

V 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~-~~ 

••
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where
* 2c
11 

= c
11 

— c12/c22, (3.5)

and it is to be emphasized that these equations hold for arbitrary orienta—

• tions of x1 in the anisotropic case. From the loading shown in Fig.]., in the

region in which the surface wave velocity is measured, i.e., z2 <b, we have

M=- Pa, (3.6)

where P is the load per linear dimension, which with (3.2) indicates that

= 0. Since the slope of the deflection curve vanishes at = 0, from

(3.4) we obtain

w~°~ =— z1(3/2h
3
)M/c~1 , (3 .7)

which relates the loading to the slope of the deflection curve. From (3.1)

and (3.3) we obtain the important relation

w2 2 =— (c12
/c22)w11 . (3.8)

Now, from (3.1), (3.3) and (3.7), we obtain

w11 = z
2(3/2h

3
)M/c~1 . (3 .9)

Moreover, from (3.1), (3.3) and (3.7), we find

1 2  
= ] 

2h
3
c~1 

21  1 
2h
3
c~j 

~ (3.10)

and all other three-dimensional displacement gradients vanish. From (2.6),

(3.1)3 
and (3.7) — (3.10), we obtain

= ~2 
2h
3
c~1 

E~2=— 2 
2h
3
41 

, E~ 2 0 , E
~K

=0 , (3.11)

for the three-dimensional strain field. In addition, f rom the usual three-

dimensional linear anisotropic stress—strain relations and (3.11), we have

—-
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T~1=z2 ~~ 
T~3 

= (c].3
_~~~~ 12), T~1= 

~~~~~ 

~ 
- 

C
25
:

12) (3. 12).

which are the nor*vanishing components of Etress resulting from (3.11).

Note that at the top fiber z2 -h, T~j  is a maximum and has the value

T~~ = 3~V2h
2
. (3.13)

In the case of cylindrical flexure in the x3-direction, the analytical

treatment is the same except for the fact that the index 3 replaces 1 through-

out. Under these circumstances the pertinent displacement gradients and

strain components take the respective forms

3M 
V 

3M
2 3 * ‘ ~~2 3

=~~~ ~~3 3 * ‘ 
(3.14)

‘ 2hc 2hc

1 3M 1 3M 1 1E33 
= z2 ~ * 

, E~2 — z2 ~~ * 
i— , E32 0, S1~

=O , (3.15)
2h c

33 2h c
33 

22

in place of the forms in (3.10) and (3.11) and where

c33 = C
33 

— c
32
/c22 . (3.16)

In addition, in place of (3.12) and (3.13) we have, respectively,

T~3
z
2 ~~~ , T~1 ~~~ (013 — ~~~~32), ~~~ = ~~~~~~~~ 

~ 
- 

~~25
C

32)

h c~3 22• c
33 22

T~~ = 3M/2h 2 . (3.18)

Thus, depending on the loading situation, we use either Eqs. (3.10) — (3.12) or

Eqs. (3.14), (3.15) and (3.17) in the static bias equation (2.11).

4. Application to Rotated Y-Cut Quartz and Y-Cut Lithium Niobate

For the case of static flexural biasing stresses both in and normal to the

propagation (X
1
)-direction, for rotated Y—cut quartz, Eqs. (2.1) and (2.2), with

A



(2.11), the aperopriate relatioi~s in Sec.3 and

w2 2
— (c32/c22

)w3,3, 
(4.1)

12 13
take the form

c11
u
1,11

+ (c12+c66)u2,12 
+ Cc14 

+c~~)u3 12 +c66u122 +e11~~11+e26~~22

+ E~1((c~1 
+2c11 

+c111 
+ov112

)u
1 ~~ 

+ (2c6~ +c 166 +~~c266
)u

1,22

+ (c12 +c66 +c112+c166 +a (c12+c66 +c
122+c 266))u2,12

+(c
14

+c56

+ c114 
+c156 

+~~(c124 
+c

2~~
))u

312J + w
1 2

[c66u2 ~~ 
+c 22u2 22 +2(c12

+ c66)u1 12 +c56u311 +c
24
u322 1 + w

21
(c
11
u
211

+c66u222 J

+ E~ 3 (Cc 13 + c113 + B Cc12 + c112
) )u

1 11 
+ Cc 123 + C

366 
+ B (c12 + c

122 
+ c66

+ c266))u2 12~ 
(c14+c56÷c134

+c356 +B (c 24+c256
))u3,12

+ (c366+

+ Bc266)u1 22~ 
+ w3 2 ~ l2 

+ c66 )u3 12 + W
2 ~ 

(C 14 + c56 )u 2, 12 ~~l ~

c56
u
3 11 + Cc12 

+c66 )u1 12 +c66u2 ~~ 
+ C 22U

2 22 
+c

24
u3 22 

+ Ce26 
+e
12
)~~12

+ E ~1((c 12 +c66 +c 112 +c 166 +c~(c12 +c66 + c 122 + C 266 ) )u 112 + ( C ~1+c 166

+o~(2c66 +c266))u211 + Cc122 +o’(2c22 +c 222))u2 22~ ~C lS6 +~~(c56

+ c256))u3 ll~ 
Cc124 +~~(c24 +c224))u322 1 + w1 2

(c66u1 11 +c22u122]

+ w2 1(c11
u
1 11 

+ c66u1 22 + 2 (c
12 + c66 )u 2 12 + (c14 + c56

)u
3 l2~

+ E~3
((c13+c366

+B (C12
+2C66 +C 266 ))u2,11

+ (c123
+c366 +B (c12

+c66 +c122

+c
266

) )u 112 + (c56 +c 356 +B (c56+c256))u3 11~ 
(c223 +B (2c22+c222))u222

+ Cc24 
+ C 234 

+ B (c24 + c
224
) )u

3 221 
+ w

3 2Ec22
u
3, 22 

+ c66u3 l1~ 
+ W

2 3 1: c14

+ c
56
)u
1 12 

+ 2c56u2 11 + 2c
24
u
2 22 

+ C
55U

3 ~~~ 
+ c44u322 1 = Pu 2 ~
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c55U311 + (c~~ +c
14
)u
1 12 

+c
5~
u
2 11 

+ C
24U

2 22 
+ C 44

U
3 22 

+ Ce25 
+e14)~ 12

+E~1
(Cc 14

+c~~ +c114+c156 + c~Cc124+c 256))u112 +CC 156
+cY (C

56 +c 256))u211

+(c124 +~~
(c24 +c224

))u2 22 + (c~1
+c

155 
+~ c255)u3 1l~ 

Cc144
+~ c244)u322

]

+ W1 2  
[c56u1 11 + c

24
u
1 22~ 

+ W
2 1 Cc14 + c

56 
)u
2 12 

+ E~~3 
[Cc

14 
+ c
56 

+ c
134

+ c356 + B(c124 +c256
))u1 12 + (C 56 +c356 + B(c56 

+c
256

))u2 11+ (c24+c234

+ B( c 24 +c 224 ) )u
2 22 + Cc13 + Bc12 + 2c55 + c 355 + Bc255 )u 3,11

+ (2c44 + c 344

+ Bc244 )u
3 22~ 

+w 3 2
((c 12 +c66 )u1 12 + c66u2 11+c 22 u2 22~~ 

2c56u311

+ 2c
24
u3 22~ 

+w
2 3 [c

44u222 +c55u211] = c~ii3 ~
e11

u
111 

+ Ce12 +e 26 )u 2 12 + (e14 
+e

25)u3 12 
+e

26
u
1 22

— — 

~22~’ 22 = 0 ~ (4.2)

where

~~~=—  c1~/c~~~, B = —  c
32

/c
22

. (4 .3)

From (2.13), with (2.10), for straight-crested waves with propagation wave-

nuiflber ~, we have the boundary conditions

= 0 , 
~~~~ 

c0~cp, 
at X2 

= 0 , (4 .4)

. 12 13 . . . .and from (2.2) and (2.11) we obtain ‘ the pertinent constitutive relations

X21— c 56u3 1 +c66 (u
1 2 +u 2, 1) + e 26p

, 2 +E 11 2c66 +c 166 +oc266 )u 1, 2

+ Cc66 + C166 +~~Cc66 +c266))u2 ~~
+ Cc56 

+ C 156 +~~c256 )u 3 1~ 
+w 1 2 (Cc 12

+ c66 )u1 1 + c
22
u
2, 2 

+C
24U3 2~ 

~ W2 1
c66u2 2 +E~3[(c366 + 5c266

)u
1, 2

+ (0366 
+ B(c66 +c266))u2 ~ 

+ (c
5~ 

+ c356 + Bc 256 )u 3,11 +w 3 2c66u3 1 +w 2 3c56u2, ~~

- - - • ~~~~~~~~~~~~~~~~~~~~~ • • ~~~ •
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c55
u
311

+ Cc~~ +c14)u1 12+c56u2 11+c24u2 22~~~44~3 ~~~~+ Ce 25 
+e

14
)~~ 12

+ E~1
L(c14

+c
56

+c
114

+c156 +0Cc124+c 256))u1,1.~
+ Cc156 +0Cc56 +c256))u2,11

+Cc124 
+ c~ (c24 +c 224

) )u 2 22 + Cc~1+c155 +0c255)u3 11~ 
(c144 +0c244)u322J

+ w
1 2

(c
56
u
1, 11 

+ c24u1 22~ ~~~ 1Cc 14 + c56
)u 2 12 +E~3 

( Cc~~ + 0
56 + c134

+ c356 + B ( c 124 +c 256 ) ) u l,12 + Cc56 +c356 +BC c56 +c2~~~~u2,11
+ Cc24+c234

+ B Cc24 +c224))u2 22 + Cc13 
+ Bc12 + 2c55 + C355 + Bc255

)u3 j~ 
+ (20

44 + 0344

+ Bc244 )u
3 22~ 

~~W
3 2(Cc 12 +c66)u1 12 66 2 11 22 2 22 

+ 2c56u311

+ 2c
24u3 22~ 

+ w 2 3 1c44 u2 2 2 +c55u2 111 = 
3

e11
u
111 

+ Ce12 
+e

26
)u2 12 + Ce14 

+e
25)u3 12 

+e
26
u
122

— — 

~22~~22 
= 0 , (4.2)

where

Q —  c1/c~ 2 ,  B = —  c
32
/c22 . 

(4. 3)

From (2.13), with (2.10), for straight-crested waves with propagation wave-

nuu~ber ~, we have the boundary conditions

= 0 , afr2~~~ ~~~~~ 
at X2 

= 0 , (4.4)

H, and from (2.2) and (2.11) we obtain12’13 the pertinent constitutive relations

H ~ 21= c 56u3,1 6 6 (u
, 2~~~ 2,1

) +e 26~ 2 +E~1[(2 c66 +c 166 +0c266)u1 2

+ Cc66 +c166 +0(c66 +c266))u2 1 + Cc56 + C 156 +0c 256 )u 3 ~] +w 1 2~~~ 12

+ c66 u~ 1
+c~2

u
2~~ 

+c
24u3 2

j +w
2 1

c66u2 2+E~3[(c366 + Bc266 )u1, 2

+ Cc366 
+ B C c 66 +c 266 ) )u 2 1~~ 

(056 +c 356 +B c 256 )u 3 ~J +w 3 2
c66u3 1 + w 2 3c56u2 1 ,
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• + Cc 122 +0(2c 22 +c 222 ) ) u
2 2  

+ Cc 124 +0(c 24 +c 224 ) ) u
3 2~ 

+ w 1 2 c22u1 2

+ w2 1
[(c12

+c66 )u2 1+c66u1 2 +c
56
u
3 1~

+ Cc 223 + B C 2 c 22
+ C

222
) ) U

2 2
+ Cc 24

+ c 234 + B ( c
24

+c 224
) ) u

3 2~ 
+w

3 2
c

22
u

3 2

+ w
2 3(c14

u
11

+2c24u2 2
+c
44u3 ~J

x23 — c 14u11 +c 24u2 2 + c44u
3 2

+e 14p 1+ E 11[(c 14 +c 114 +0c124 )u 11+ Cc 124

+ 0(c
24 

+c224
))u

2 2  
+ Cc144 

+0c
244

)u
3 2J +w12c24u12 +w21c14u2 1

+ E~3
((c
14 

+c
13~ 

+ Bc124
)u
11 

+ Cc24 ~~~~~ 
+ B(c24 

+c
224

))u
2 2  

+ (2c44

+ c344 
+ Bc244)u3, 2 

+ w3 2 ~~22~2, 2 
÷ C12~1 ~ 

+ 2c24u3 2~ 
+ W

2 3c44u2 2

= e25u3 ~ 
+ e

26(u12
+u2,1

) — 

~22~~2 
(4.5)

For the direct calculations performed in this section we take E~j  and E~3 to be

constant with respect to the decay length of the surface wave. This is a

reasonably accurate assumption for thick substrates for which the surface

wave decays rapidly compared to the variation of the flexural stress, but

not for relatively thin substrates. In addition, in the direct calculation

performed in this section we ignore the variable displacement gradient terms

w12, w21 and w3 2~ w2 3  in (3.10) and (3.14), which do not give rise to

strains, because of their dependence on the position coordinate X1
. The in-

fluence of this latter assumption is not too great because the neglected terms

do not contain the third order elastic constants, which are considerably larger

than the second order elastic constants. Calculations are performed for

cylindrical flexure either in the X
1—direction or in the X3—direction only,

not in both directions simultaneously . Consequently, in the calculations

_ _ _ _ _  

V
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performed the biasing terms containing either the index 3 or 1 in (4.2)

and (4.5) vanish.

A solution satisfying (4.2) and (4.4), with (4.5), may be taken in the

usual form

~ Cm) Cm) iB~~
X2 i~ (X1—v’c)

uY L C  A
Y

e e

~~~c Cm)
B
(m)

e m~~2e 1-vt ) 
(4.6)

m 1

where V, B , A (m) B
(m) 

and ~
(m) are determined numerically so that (4 .2)

• . . . 14—16and (4.4) , with (4. 5) , are satisfied in the usual manner . Calculations

have been performed for ST-cut and Y—cut quartz’7’18 in X1-flexure and the

results are plotted as the line labeled a in Figs.2 and 3, respectively. In

addition, we have performed calculations for ST-cut quartz in X1-flexure when

the biasing terms, i.e., those proportional to E~~, have been ignored in the

boundary conditions (4.4), with (4.5), and the resulting line is labeled a*

in Fig.2. It is clear from the figure that the difference is quite great and

that, ~~~~~~~~~~~~ in general the nortlinearities in the boundary conditions

are quite important. Calculations have been performed for X3-flexure also,

and the results appear as the line labeled b in Figs. 2 and 3 for ST-cut and

Y-cut quartz, respectively. No line labeled a* appears in Fig. 3.

For the case of static flexural biasing stresses both in and normal to

the propagation (X
3)-direction for Y-cut lithium niobate, Eqs. (2.1) and (2.2),

with (2.11), the appropriate relations in Sec.3 and (4.1) take the form12’13
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V
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c22u
2 2 2 + Cc 23 +c 44 )u 3 23 +2c 24u

2 23 +c 24u3 22 ~~C 44~~2 33 + e 22~ 22~~(e32 +e 24
)~~~ 3

+ E~3
((c223 +BC2c 22 

+c222
))u

2 22 + (2c234
+ B (4c24 

+ 2c
224

))u
2 23 + (c 3 +c 344

+ B C2c44 +c244))u2,33 
+ (c24 

+c234 + B(c24 
+c

224flu3 22 
+ Cc23 

+ C 44 +c233 +c344

+ B(c23
+c
44

+c
223

+c
244

))u
3,23

+ Cc34
+c

334+B (c34
+c

234
))u

333
]

+ w
3 2

[c
2~
u
3 22 

+2c
24u3 23 

+c44u3 331 +w2 3
[2c

24
u
2 22 

+ 2Cc23 
+c
44
)u
223

+ 2c34
u
2 ~~ 

+c
44
u
3 22 + 2c34

u3 23 +c33u3 331 +E~1[(c 122 +0(2c22 +c222))u222

+ (2c124 
+0(4c24 

+ 2c
224

))u2 23 
+ 
~
°13 

+c144 +0(c23 + 2c44 +c244flu2 33~ 
Cc124

+ 0(c 24 + c 224
) )u 3 22~~ 

(c123 + c 144 +0(c
23 + c 44 + c 223 +c 244 ) ) u 3 23 + Cc 134

+ 0Cc 34 + c234))u333 1 = pu2,

c24u2 2 2  ÷ Cc 23 + c 44
)u 2 23 +c44u3 22 +c33u3 ~~ 

+e24~ 22 +e 33~ 33 +E~3(Cc 24

+ c234+B (c24+c224))u2 22 + c23 +c44+c233 +c344+BCc 23 +c44+c223

+ c244
) ) u 2, 23

+ Cc 34 + c 334 + B ( c 34 +c 234
) )u 2 ~~~~~ 

(2c44+c344+Bc244
)u
322

+ (4034 + 2c
334 +2Bc234)u3 23 + (2c33 +c333 +~ ;3 + Bc233

)u
3,33 

+w
3 2

(c
22
u
222

+ 2c24u2 23 
+c
44
u2 ~~ 

+2c24u3 22 + 2Cc 23 
+c
44
)u3 23 + 2c

34u3 331 +w2 3
(c
44u222

+ 2c
34
U
2 23 +c33u2 33] +E~1[(c124 +0Cc24 +c224))u2 22 + ~C 123 +c144 

+0(c
23

+ c44 +c 223 +c244))u2 23~ 
(c134+0(c34+c234))u2 23~~ 

Cc144
+0c

244
)u322

+ 2Cc134+~~ 234)u3 23~~ 
(c13+~~~23 +c133 +~~~233)u333] = 3 ‘

e
22u222 + (e

24+e32
)u
2 23

+e24
u
3 22

+e
33
u
3 33~~~22~~22~ 

€33~~33 =O~ (4.7) 
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where 0’ and B are given in (4.3). Again the boundary conditions are given by

(4.4) and from (2.2) and (2.11) we obtain12’ 
].3 

the pertinent constitutive

equations

~22
c~2

u
2 2  +c~3u3 3  +c24

(u
2 3  +u3 2 ) +e22~~2 +e32~~3 

+E~3
[(c223 +B (2c22

+ c222))u2 2~~ 
(c234+B (2c24+c

224) )u2 ~~
+ (c24+c234+B (c24+c224))u3 2

+ Cc23 +c233 + 5Cc23 +c223
))u

3 3
] +w

3 2(c22u3 2  +c24u3 3] +w2 3 (2c24u2 2

+ Cc23 
+c44)u2 3 +c44u3 2

+ C
34

U
3 ~

] +E~1((c122+~~C2c22 +c222))u2 2
+ Cc124 +0(2c24 +c224

) )u
2 ~ 

+ Cc124 +0Cc24 
+c224) )u3 2 + 

~~123

+ Q’(023 +c223))u3 3 ] ~

+ c224))u2 2 + (c44+c344+5(c44+c244
))u

2 3+ (2c44+c344+5c244)u3 2

+ (2034 +0334 +Bc234
)u 3 3] + W

3 2 [ c
22

u2 2  +c24u2 3  -4- 2c24u3 2  + (c23

+ c44)u3 31 + W
2 3

(c
34
u
2 3

+c44u2 2~ 
+E~1

[(c124+0(c24+c 224))u2 2

+ (c
144+0(c44+c244

))u
2 3

+ (c
144+0c244

)u
3 2~~ 

Cc134+0c234)u3 3 1 ~

D2 =e22u2 2
+e24(u2 3

+u
3 2 ) ~~~~~~~~ ~23~~3 

(4.8) 
V 

-

A solution satisfying (4.7) and (4.4), with (4.8), may be taken in the

usual form

= ~ C
(m)

A~
m)
e~~m~

C2 
e 

(X 3~Vt) 
1

m—l

~ c Cm)BCm)e~~
m
~~
2 
e 

(X 3~Vt) 
, (4.9)

m 1

A
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wbere V~ B~, A~
m) and ~

Cm) are to be determined numerically so that (4.7)

and (4. 4) , with (4.8) are satisfied in the usual manner’5’
18
’
19
. Calculations

have been performed for Z-propagating surface waves on Y-cut lithium niobate
20
’
7
,

and the resulting lines are plotted in Fig.4. The notation on the lines in

Fig.4 has the same meaning as in the case of quartz in Figs.2 and 3, and no

a* line is plotted.

5. Perturbation Procedure

If we define the change in phase velocity due to the applied flexural

biasing state by

~
V V

M
_ V  (5.1)

then it has been shown that for traction free and zero normal component of V

electric displacement boundary conditions the first perturbation in phase

velocity is given by
9

H~/2V~~~ , (5.2)

where ~~ 2ii~~ 
-

HM = 
- S ~ ~~~~~~~ 

+ 
~~~~~~~~~ ~~2~~l 

(5.3)

Z A AM A .
~M

(5. 4)

e~ (0’
u
0’ K 

- CLKCP K~
with

A
A M M ‘~.M~~~Mu,( = u4/NM, cp = p INN ~

~ 
211/~ ]~ 

C5.5)

N~ = p0 ~ u~u~ ~~2~~1 ‘

where the coefficients in (5.4) are defined in (2.3). In the case of a purely

elastic bias, which exists when electric and electroe lastic coefficients are 

- -~~~~~ V - -  - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
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ignored, (2.11) and (2.12) hold in place of (2.3), and in place of (5.3) and 
•

(5.4) we have

I ~~2 
2ii~~~ 

~~~~~~~~~ 
dX
1 ~ (5.6)

~fl A AMx~ = c  u (5. 7)
LV L~1’K\) V, K ’

where C
L~YX\, 

is given in (2.11).

When (5.6) is applied to the case of rotated Y-cut quartz subject to

cylindrical flexure in the propagation (X1
)-direction, we obtain the form

~ 21T/~
HM 

= - .1 ~~2 1

M 

~
‘
~ l l  + ~~~2

U
2, ~~

+ K~~3
t1

3 1~ 
~~~~~~

+ 
~~2~

12, 2 + X~ 3~13 21 ~~i 
(5.8)

The substitution of (5.7), with 2.11), along with the appropriate relations

in Sec.3 into (5.8) yields

2u/~~
HM =~ 

d~~ 5 dX1((c~ 1+2c 11+c 111 +0c112)E~1~i1 l~l l~ 
Cc~1+c 166

+ ~~(2c66 +c 266 ) ) E~1ft 2 ,G2 ~~
+ (c

~i 
+C].55 +~~ 255)E~1~3 l~3 

~~ (2c66

+ C166 +0c266)E~1G1 211
1, 2 

+ Cc122 
+~~C2c22 

+c 222 ) )E ~jci2 2~
1
2, 2 

+ Cc144

+ 0c244)E~j~i3 2~3 2  
+ 2(c

12 
+c

112 +0Cc12 +c 122 ) ) E ~11~1 l~ 2 2  + 2(c14

+ c114+~ c124)E~1~1 1G
3 2  

+2Cc66 +c166 +0(066 + c
266

) ) E ~ 1~i1 2~ 2 1

+ 2Cc
% 

+c156 +0’c256)E~jfi1 2~3 1
+2Cc

156 +0C
c
56 

+c
256

))E~1~3 1
cI
2 1

+ 2 Cc124 
+0Cc24 + c

224))E~1~2 2’~
’3, 2 

+ 2c66w1 2~’l,l’~2,l 
+ 2c

22
w
1 2~

h
1, 2

11
2,2

+ 2c56w1 2~l, 1Y3, 1 
+ 2c

24~1, 2”]., 2”3, 2 
+ 2 (c

12 
+ 066 ) w1 2u1, l~l, 2

+ 2c11w2 f’i, f’2, 1 + 2066!v12, l”l, 2”2, 2 
+ 2c

14
w
2 1”3, 2”2, 1

+ 2c56w2 1
12

2 2G
3 1  

+2Cc
12 

+c66 )w2 l~2 1~2 ~ 

~~— ~ ——-—-. ~~~- -~,-~~~~~- -



- - -i

18.

where from (3 . 10) and (3.11), with Fig.l

= (i - 

~
) ES , 

~2 1  — ~~ ES~ ~E1 2 =~~~~ 
ES C5.lO)

and 
E

S 
— - 3M/2h

2
c* . (5.11)

When the integrals in (5.9)  are performed, the resulting expression is

extr emely cum bersom e and not terribly revealin g. Consequently , we do not

present the complete equation from which the calculations are made. However ,

in order to give some idea of the type of terms that occur, we present two

typical distinct types of integrals. These are

1T/~~~ TT/’~~14 x$ 
~~2 ~~~ 

E~1~1 1~1, 1 
= $ 

~~2 
$ ~~~ (i - -

~~~) 
E
5
G1 l”l, 1

0 .

~ ~ 
(mu) (mu) (~ ) * (~ ) * 4 4 Cm) Cm) (~ ) * (~ ) *

r ‘ç ~ C A
1

C A
1 ~ 

C A
1

C A
1 i s

= R e I i T T  / - —~~-- - - - -i+— J /
L L . .  2 ,~ 0 N~, ~I ~ji £ L_ 2,~ ~*~2 J

rn—i ~~ ] NM~
P — Pri

g rn—i n 1  NM~
P —

(5.12)

S ~~2 
w2,1

u1,2
u
2,2 ~~1 

= 
S ~~2 ~~1 

~~ E
S
G12~22

4 4 Cm) (mu) (n) (n)
11 ~ ~~ 

C A
1 

C A
2 5m5n

L 2 QM m=l n 1  NM ~ m 
+ ~~~~

~~ ~ c
(m)A

(m)
C CnI)*A

(n)*
B 5* ~

+ i2mT 
2 m n] ~~ , (5. 13)

h
r n 1  n 1  M~ ’m n 1

where

2 ~~~~~ 
‘~ ~~ C

(m)
A Crn)

C C~)
*
A C~
.
~)
*

NM 2 Y ~~ * 
, (5.14)

r n 1  r t 1  
~
5m~~

5n~

the * denotes complex conjugate and 2h is the thickness of the plate, which is -
•

many times large r than the wavelength of the surfac e wave so that

_ _ _ _ _ _ _ _ _ _ _ _ _  
_ _ _ _ _  
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(u.~, ~
) -, 0 at X2 = 2h. (5.15)

Note that the biasing term in the typical integral in (5.13) is the type of

term that was ignored in the direct calculations performed in Sec.4. When all

terms of this type, i.e., those not giving rise to a strain, are ignored along

with the X2-dependence of the strain E~j in the perturbation calculations for

both ST-cut and Y—cut quartz, the results are indistinguishable from the lines

labeled a in Figs.2 and 3, respectively. However, when the spatial variation of

all biasing terms in (5.9) is included in the perturbation calculations for ST-

cut and Y—cut quartz, the resulting curves plot as the lines labeled a ’ in Figs. 2

and 3, respectively. It can be seen from the figures that although the difference

between curves a and a ’ is small, for relatively thick substrates, it increases

appreciably with decreasing thickness-to-wavelength ratio. This means that since

the change in such physical quantities as phase velocity with biasing deformation

is very small, the perturbation procedure is significantly more accurate than the

direct calculation for the determination of such quantities because it enables

the influence of variable biasing terms to be included in the calculation.

When perturbation calculations are performed for ST-cut and Y—cut quartz subject

to cylindrical flexure in the X3-direction, i.e., normal to the propagation direc-

tion, the resulting curvet~ plot as the curves labeled b’ in Figs.2 and 3, respect-

ively. In this case no terms due to the variable biasing diaplacement gradients

w2 3  and V3 2  survive in the perturbation calculation because they are odd in

and the surface wave is independent of X3.

When (5.6) is applied to the case of Y—cut lithium niobate subject to

cylindrical flexure in the propagation CX3 )-direction, we obtain the form

H
M

= _  
$ 

dX 2 5 
(1
~ 2

u
2,2 

+K~3
u3 2  ~~~2

”2,3 
+K~3

U
3 3 J dX3 . (5.16)

° n/CM
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The substitution of (5.7), with (2.11), along with the appropriate relations

in Sec.3 into (5.16) yields

HM~~~ S ~~2 $ 
dX3 ((c

223 
+ B (2c22 +c222

))E~3~
i
2 2~2 2  

+ 2Cc234 +BC2c24
0 1•1/~~4

~~ a 1 a a

+ c224))E33
u
2 2u2 3  

+ 2Cc24 + c~3~ + 5(0 24 +c224))E33u2 ~~ 2 
+ 2Cc23 

+ c
233

+ B (023 
+ c223))E~3~2 2~3 3  

+ (c 3 +c344 + 5(2c44 +c244
))E~3~2,3~2, ~ 

+ 2 (044

+ c344 + 5Cc 44 +c 244 ))E~ 3~i2 3”3, 2 + 2(0
334 + Bc234)E~3~m2 3

U
3 ~ 

+ C2c44 +c344

+ Bc244
)E~3~3 2”3, 2 

+ 2(c 334 + 5c234)E~3~i3 2”3,3 
+ (c 3 + 2c33 + C333

+ Bc233)E~3~3 ~~~~~~~~~ 
2
~24~3 2”2, 2~

’2, 2 
2(c23 

+c
44
)w
3 2”2, 2’~

’2, 3 
+ 2(c

22

— c44
)w3, 2~

’2, 2”3, 2 
+ 2c

24
w
3 2~

12 2’~3, 3 
+ 2c

24
w
3 2”2, 3~3 2 

+ 2 (C44

— c33)w3 2”2, 3~
’3, 3 

+ 2c24”13, 2”3, 2”3, 2 
+ 2(023 + c44)w3 2”3, 2~

’3, 3
] t5. 17)

where from (3.14) and (3.15), with Fig.l, we have

E~3 
= (i - ~s 

~~2 3 
— ~~~ 

2 
= - (5. 18)

and

= — 3M/2h2c 3. (5. 19)

As in the case of quartz and for the same reasons we do not present the full

equations from which the calculations were made, but instead present the two

typical distinct types of integrals 

“---V-- • V~ V - -
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$ ~~2 $ dX3 E~3G2 2’~2 2 
= S dX2 $ dX3(l - 

~~
) ~~~~~~~ 2”2, 2

o 
~“~M

~ ~ C
(m)

A
(m)

C
(n) A (1m)

S 5*r. ~~~~~~~~~~~~~ 2 2 m n
= ReI 1TT / /

L ~-. ‘- 2 *m l  n—i NM (Bm
_

3 3 Cut) (mu) (n)* (n)* *

+ 

C A
2 C 

* 

A
2 SmBn] ~S , (5.20)

m=l n l  NM CBm
_ B

n
)

TT/~~~

$ ~~2 5 dX3 
w2 3’~2, 2

L~3~ 2 
= 5 dx2 S ~~3(h 

“2, 2”3, 2) 
~s

o -TV~~ o -4TI~~

3 3 (mu) Cm) (n) (n) ~
~r r ~ 
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m=l n]. m ~

The results of perturbation calculations for Y—cut , Z—propagating surface waves

yield curves a’ and b’ in Fig.4.
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FIGURE CAPTIONS

Figure 1 Schematic Diagram of the Surface Wave Structure Showing
the Applied Static Loading

Figure 2 Relative Change in Surface Wave Velocity Per Unit
Applied Maximum Extensional Biasing Strain vs. Thickness-
Wavelength Ratio for ST-X Quartz. The curves a’ and b’
are for cylindrical flexure in and normal to the
direction of propagation, respectively.

Figure 3 Relative Change in Surface Wave Velocity Per Unit
Applied Maximum Extensional Biasing Strain vs. Thickness-
Wavelength Ratio for Y-X Quartz. The notation is the
Same as in Fig. 2 .

Figure 4 Relative Change in Surface Wave Velocity Per Unit
Applied Max imum Extensional Biasing Strain vs. Thickness-
Wavelength Ratio for Y-Z Lithium Niobate. The notation
is the same as in Fig.2.
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